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1 Introduction

The objective of this effort is to develop a suite of parallel benchmarks for the domain of
C3I (command, control, communications, and intelligence) applications. The
benchmarks are being aimed at the evaluation of parallel hardware architectures as
well as parallel software technology.

The benchmarking methodology will be based on the NAS (Numerical Aerodynamic
Simulation) parallel benchmarks|1] and the parallel benchmarks developed by the
PARKBENCH Committee[2]. The main reason for developing an altogether new set of
benchmarks is that C3I applications are significantly different from the scientific
computations addressed by the existing benchmarks.

In this report, we discuss the benchmark selection criteria and present an outline of
the selected benchmarks. Each benchmark outline describes the importance of the
benchmark to C3I systems, identifies the computations and input data required by the
benchmark, and discusses the issues involved in parallelizing it. Ten out of the eleven
kernels presented here will be developed further into complete benchmarks during the
course of the program.

2 Benchmark Selection Criteria

The main purpose of the benchmark suite is to provide an effectlve means to evaluate
the use of high performance computing technologies for future C31 systems. To achieve
this goal, care must be exercised in selecting individual benchmarks as well as in
deciding which benchmarks will constitute the overall suite.

2.1 Selection Criteria for Individual Benchmarks

Each benchmark must represent the core computations in one or more important c3
application areas. It should be computationally intensive and should have the potential
for significant performance improvement through parallel execution.

The size of a benchmark should be carefully selected. A benchmark should not be so
small that it fails to be representative of the computations and data movement in real
applications. Similarly, it should not be so large that vendors and other implementors
cannot justify the high cost of implementing it. The benchmarks developed under this
program will consist of core computations of significant size (called kernel benchmarks)
rather than complete end-to-end applications.

The input data set for each kernel should be large enough to allow at least two order of
magnitude performance improvement. Ideally, multiple input data sets should be
considered wherever that is necessary to expose significant transitions in parallel
performance. Finally, the input data should be unclassified so as not to hinder wide
dissemination of the benchmarks.

2.2 Selection Criteria for the Overall Suite

The members of the benchmark suite should complement each other. Together, the
selected benchmarks should cover a wide range of algorithms, degree and granularity
of parallelism, data partitioning, global versus local dependencies, interprocessor and
intraprocessor data movement, computation-to-communication ratio etc.




3 Selected Kernels

Based on the criteria identified in the previous section, we have initially selected an
initial set of eleven C3I kernels from the list of twenty application areas suggested by
Rome Laboratory.

. Terrain Masking

. Plot-Track Assignment

. Synthetic Aperture Radar
. Map-Image Correlation

. Hypothesis Testing

. Route Optimization

. Discrete Event Simulation
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. Tracking

9. Threat Analysis

10. Image Understanding

11. Decision Support Systems

In our selection of kernels, we favored areas which involve computations that are
unique to C3I applications. This is the reason that we did not select the more general-
purpose scientific computations such as 2-D transforms, convolutions, or ray-casting.
These types of algorithms are well-studied in the scientific literature. Instead, we
favored kernels arising out of more complete application functions such as route
optimization, tracking, and synthetic aperture radar processing.

The following sections present an introductory description for each benchmark. Each
section describes the importance of the benchmark to C3I systems, and identifies the
computations required by the kernel. We discuss the benchmark input data, and
outline the parallelization issues associated with the benchmark. It should be noted
that the kernel for Pattern Recognition has been dropped, and the kernel for
Hypothesis Testing is different from the one presented at the program kickoff meeting.
Of the eleven kernels presented in this report, ten kernels will be selected for further
development in consultation with Rome Laboratory.

4 Terrain Masking

4.1 Importance to c3r Systems

Terrain Masking computations are used in ground based C3I, and in aircraft flight
mission computer systems to aid in attack, covert, and evasive flight operations. When
used in mission systems, evasive routes are generated which have low observability
with respect to a set of given threats and their positions. Such threat positions may be
known in advance and included in the database, or detected during flight.




4.2 Kernel Computations

A threat intervisibility calculation indicates what terrain surrounding a threat, e.g.,
anti-aircraft SAM site, is hidden from the threat sensor equipment, typically a radar-
type sensor. Terrain may be hidden from the threat sensor equipment because it is
either beyond the range capability of the threat, or is within range but terrain masked
relative to the view of the threat installation. To properly calculate intervisibility, the
terrain surrounding the threat must be fully analyzed, taking into account such factors
as DTED database characteristics, radar range, threat elevation, earth curvature, and
radar curvature along the earth’s surface.

There are two basic approaches to computing intervisibility -- one based on radial scan
of the area to be covered and the other based on a two-dimensional linear scan. Under
the radial scan approach, data sampling of the DTED database occurs along radials
emanating from the threat position, and having a length corresponding to the range of
the threat. The basic algorithm computes the lower boundary of the detection envelope
over the visited area, which may be represented in terms of the set of masking altitudes
(hj) at the visited data points j .
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Figure 1. Terrain masking altitude calculation

Figure 1 shows a family of radials centered on a given threat and a cross-sectional view
along a radial. As points j along a radial are visited, h , 1 may be expressed in terms of
h, by the equation

(AR)
(h -H) + -5~ 2R, }

Where H, is the altlt de of the threat, H is the altltude of the terrain at j+ 1, R, ; is
the dlstance of the ] data point from tHe threat AR = - R, and R, is earth’s
radius. If H. . is the greater of the two terms above, the {erram at the sample point
j+1lis v1$1E])1e to the threat, else it is masked. The shaded areas along the radials
represent a volume of terrain masked space with respect to the threat.




As the visited points along radials do not always coincide with the DTED grid points,
the terrain elevation at a sample point may have to be computed by interpolation of the
DTED grid points in the immediate neighborhood of the sampled point. Similarly, the
computed masking altitudes must be converted back by interpolation to the masking
altitudes at the DTED grid points.

4.3 Parallelization Issues

The computational complexity of the terrain masking calculations depends on several
operational parameters -- size of the gaming area, number of threats, ranges of threats,
and the granularity of spacing between grid points. One obvious way to parallelize the
kernel is to compute along different rays in parallel. For a coarse 50 angular spacing
between rays and a 360° scan, there is potential for 72-fold improvement in
performance. Where multiple threat are involved, each threat can be handled in
parallel, which potentially results in total speedup of two orders of magnitude. In this
case, the effective masking altitude at a point is the minimum of the masking altitude
due to individual threats. As the computational load for a threat depends on threat
parameters (e.g. range), the assignment of threats to processors will have to take load

balancing into account.

4.4 Kernel Benchmark Data

The input datasets for the kernel benchmark will be obtained from the threat and
DTED database from the Quiet Knight program. It will consist of terrain elevation data
in earth-centered spherical coordinates with an angular quantization appropriate to
the latitude of the area covered, unclassified threat data in terms of range and altitude,
and typical values for other parameters such as size of the gaming area and desired
granularity of sampling. An arbitrary placement of threats will be specified. Algorithms
used in implementations must not depend on the specific placement specified in the
benchmark.

5 Plot-Track Assignment

5.1 Importance to C3I Systems

Plot-track assignment is at the heart of any surveillance and reconnaissance system
which must infer the type and location of enemy forces in a cluttered electromagnetic
or acoustic environment. This function is an essential step in fusing information from
multiple sensors, since incoming measurement data must be correlated with existing
track databases before the measurements can be used to improve the track accuracy
and identification. The problem of plot-track assignment consists of associating the
incoming sensor returns with the existing tracks, in a manner which maximizes the
likelihood that the correct measurement-track matched pairs are obtained. Since
sensors continue reporting new information periodically, it is imperative that the data
reports from the sensors be correlated in real-time. Currently, this imposes a major
limitation on C3I systems, as processing requirements can quickly exceed the available
time between sensor reports.




5.2 Kernel Computations

Our kernel in plot-track assignment represents a typical mixture of the operations in
operational algorithms. Figure 2 illustrates the major computational blocks in the
proposed kernel. A set of tracks is available to start the algorithm, where each track is
represented in earth-centered inertial coordinates by their estimated 3-dimensional
positions and velocities and the associated 6 x 6 covariance uncertainty matrix. The
number of tracks can be scaled to provide opportunities for additional parallelism; at
this point, we expect to provide two data sets: a small benchmark consisting of 50
tracks, used primarily for program development and debugging, and a larger
benchmark consisting of nearly 5000 tracks.

¢ Measurements

Tracks
—— - Prediction [——p»| Gating |———p| Assignment

Figure 2. Major computation steps in Plot-Track assignment.

The purpose of the plot track assignment algorithm is to correlate the existing track
database with a returned measurement set from a single sensor. The measurement set
is collected at a time different from that of the track database, and contains missed -
detections and spurious returns which do not correspond to any tracks. For this
kernel, we propose that the measurement set consist of noise-corrupted two-
dimensional projections of the true object positions onto a sensor reference position.
Thus, each measurement will consist of an azimuth and an elevation angle, relative to
a sensor-oriented coordinate system. These measurements correspond to those
collected by a passive long-wave infrared telescope of limited accuracy.

The computations required in the plot-track assignment algorithm are as summarized
as follows:

* Prediction: Extrapolate the entire track database to the time of the measurement
set, including the covariance, and convert the extrapolated positions into pre-
dicted angular measurements in sensor coordinates

~ * Gating: Compare the predicted angular measurements to the actual measure-
ments, and compute a likelihood of assignment based on the covariance accura-
cies. Based on this likelihood, identify as a minimum all candidate matches
between predicted and actual measurements with a likelihood exceeding a small
threshold.

¢ Assignment: Select the most likely assignment of predicted tracks to measure-
ments in the candidate assignment set using the optimal assignment algorithm of
Jonker and Volgenant, as modified by Castanon [3].

In our detailed specification, we will provide specific numerical algorithms for
prediction. However, we will leave the choice of gating algorithm as an implementation
design. In particular, the reason for using gating is to reduce the number of candidate
assignments to be considered in the assignment algorithm; in architectures which do




not effectively exploit sparse data structures (such as SIMD architectures), it may be
more efficient to skip most of the Gating operation. For the final step, we will provide a
specification for the JVC algorithm in [3]. This algorithm is an efficient variation of an
optimal primal-dual assignment algorithm, which has proven to be among the most
efficient sequential algorithms for plot-track correlation.

5.3 Kernel Benchmark Data

The kernel benchmark data will be derived from the IDA 6260 targets scenario used
extensively in previous benchmarks by the multi-object tracking community [4]. An
initial timing of a plot-track correlation benchmark code required over 100 seconds of
computation time on a Solbourne Sparcstation (25 Mips) using this scenario. To make
the kernel sufficiently rich, we propose to use a larger scenario based on a similar
geometry. The resulting data set will capture accurately the algorithmic aspects of plot-
track correlation in modern C3I systems.

In order to verify correctness of kernel implementations, two primary outputs will be
checked: The number corresponding to the optimal likelihood of the matched plot-track
assignments, and the assignments which form the optimal plot-track assignments.
Timed computations will start once the track database and measurement sets are read
in, and will continue until the optimal assignment is found; thus, I /O time will not be
included in the timings.

5.4 Parallelization Issues

The three main algorithmic steps have different parallelization potential; the challenge
is to combine the parallelization of the three steps to achieve an overall efficient
algorithm. Our past experience in programs such as [5,6,7,8,9] and in our research
publications [10,11,12,13,14] suggests that speedup of over 100 is possible on some
architectures.

The first computational block, Prediction, is easily parallelized on a per-target basis.
The second computational block, Gating, is an associative operation which can also be
parallelized on a per-target basis, or on a per-measurement basis. Furthermore, clever
data structures such as the sort-based gating scheme used in SIMD architectures in
[9] can often increase the parallelization effectiveness of the gating procedure. The ,
parallelization bottleneck is the optimal assignment algorithm, which is roughly 5% of
the overall computation time. We estimate based on previous research results that the
parallel speedup potential of this block is under 10, so the key challenge in this kernel
will be to effectively combine parallelization across the three steps.

6 Synthetic Aperture Radar

6.1 Importance to C’I Systems

Automatic Target Recognition (ATR) is a critical problem in today's battlefield. Synthetic
Aperture Radar (SAR) imaging is one of the principal surveillance sensors for ATR, due
to its ability to penetrate sophisticated camouflage. Low resolution SAR sensors are a
current part of the JSTARS sensor suite, and high-resolution SAR sensors form the
basis of many experimental ATR systems being developed under ARPA sponsorship. In
' SAR imaging, 2-D Fourier transforms and inverse 2-D Fourier transforms are used to




reconstruct the high-resolution range-azimuth scattering images from the space-time
indexed signal returns collected at the radar. However, SAR processing requires
interpolation from the sensor-based coordinate system to spatial coordinates, thus
creating a broad mix of computations.

6.2 Kernel Computations

Our proposed computational kernel in SAR processing is based on the application of
spotlight SAR imaging. SAR imaging is an inherently 2-dimensional process; the raw
data collected by the sensor is indexed by the location of the sensor along the flight
path, u, and the time at which it is collected, . The basic steps in the SAR imaging
algorithm can be summarized as follows [16] --

¢ Convert the received signal to baseband, resolving it into in-phase and quadra-
ture (I/Q) components to support phase-coherent processing of the signal.

¢ Perform range compression. In most SAR systems, the transmitted signal is a lin-
ear FM pulse. After “deramping”, the received signal is a frequency transform of
the range history. Recovering the range information in the received signal is
accomplished by means of a DFT. At the same time, ancillary processing such as
range equalization and side-lobe suppression is performed.

¢ Perform azimuth compression. Azimuth compression is the operation that con-
verts the set of range compressed pulses to a two dimensional image in range and
cross-range coordinates. Azimuth compression is accomplished by convolving the
received signal in the ¥ dimension with respect to a convolution kernel that is a
function of the range variable. The convolution for each range bin is accomplished
by a DFT followed by multiplication by the transform of the convolution kernel
and an inverse DFT.

Figure 3 below depicts the processing outlined above for the SAR processing
benchmark

Radar "4 de0 to — Range —» Azimuth | g [mage
Data Baseband| Compression Compression
I/Q Interp. Range Convolution
weights Equalization Kernels

Figure 3. SAR Kernel Processing

The SAR kernel is based on the SAR imaging algorithms described in [16], and used in
conjunction with Lincoln Lab’s Advanced Detection Technology Sensor (ADTS) [15].

6.3 Parallelization Issues

Due to the presence of the Fourier transform and interpolation operations, SAR




processing can be computationally intensive for generating high-resolution images over
large areas. As a calibration point, SAR processing times of over 100 minutes for 4096
x 4096 images on a T800 transputer (15 MIPS, 2.25 Mflops) were reported in [17]. Such
delays would be unacceptable in the processing of real-time information for C3I. There
are several studies on parallelization of transform operations [18, 19, 17] which
highlight the extensive parallelizability of Fourier transform-like operations. These
studies indicate that using parallel computing on SAR processing for high-resolution
images can result in speedup of several orders of magnitude, provided that the
implementations can avoid excessive data movement between processors in order to
switch from transform operations to interpolation operations. The SAR benchmark
algorithm described here is a “rectangular” algorithm, and does not have significant 2-
D interpolation operations, which are characteristic of “polar” algorithms associated
with spotlight mode SAR. '

6.4 Benchmark Data Sets

In order to have readily-available unclassified data, the SAR processing kernel is based
on the SAR imaging algorithms used in conjunction with Lincoln Lab’s ADTS [15, 16].
This system has been used to obtain numerous data sets of SAR signals and images of
terrain scenes, from areas such as Stockbridge, NY and Presque Isle, ME. A portion of
the Stockbridge data is available from Lincoln Laboratory as part of the ADTS program
[20]. The data provided in [20] comprises processed images of the Air Calibration Site,
together with calibration information. In addition to this image data set, the ADTS
system records the radar video data prior to image formation. Subject to the ADTS
program sponsor approval, the video data can also be made available. These data sets
will provide realistic, unclassified inputs to be used in benchmarking.

The ADTS transmits linear FM pulses with alternating (H and V) polarizations and
simultaneously receives both H and V polarizations. The recorded video data consists
of 2032 even/odd pairs of 11 bit data words per pulse for each of the four transmit/
receive polarizations, HH, HV, VH, and VV. The benchmark SAR algorithm forms
images from 512 same-polarization pulses, yielding a 2048 (range) by 512 (cross range)
point image.

Validation of the parallel implementations of the SAR benchmark is facilitated by the
benchmark data set in two ways: First, there are output images available, making it
feasible to compare the output of the parallel implementation with the “correct” image.
Suitable tolerances allowable errors in the output image (peak and root mean square
errors) will be developed that allow for roundoff or truncation errors will be developed
as part of this program. Second, the Air Calibration Site data contains a set of reflectors
with known positions, allowing an implementation to be partially validated without
recourse to an output data set. This technique would be useful in initial development
and testing.

7 Map Image Correlation

7.1 Importance to C3I Systems

Modern C? I systems often include the capability to accept surveillance data from
remote imaging sensors such as space-based infrared satellites, remotely-piloted




vehicles (RPVs) or intelligence photographs. In order to extract useful information from
these sensors, it is important to determine accurately the alignment of features in the
images with a detailed map of the area of interest. If GPS-aided navigation systems are
used, navigation system uncertainties can be reduced significantly. However, for long
slant-range surveillance, the errors in the estimate for platform orientation make
automated registration from sensor imagery to digital map difficult. For example, for a
surveillance range of 180 km., which is the field of regard of the JSTARS low-resolution
SAR sensor in the direction perpendicular to the line of flight, an orientation error of
0.1 degree causes a misregistration of 300 m. Because the sampling density of Digital
Terrain Elevation Data (DTED) and Digital Feature Analysis Data (DFAD) is 25 m., the
estimated location of landmarks across the field of regard will be off by several bins.

7.2 Kernel Computations

The kernel is based on a scheme for establishing the registration of a SAR image to the
map coordinate system via a two-stage feature matching process. In it, the predicted
locations of digital map features (given an initial estimate of the platform’s location in
the map) are compared with the actual locations of features extracted from a narrow
field-of-view SAR image. In the first stage, coarse features (i.e. cities or bodies of water)
in the map are used to provide an initial estimate of the map-to-image alignment. Once
this information is available, the second stage uses more precise features (such as road
intersections or rivers) to achieve a high degree of registration accuracy. This approach
effectively combines the position and attitude information provided by an on-board
inertial navigation system (INS) with the precise location information provided by the
map-to-image registration process.

The proposed kernel computations will be the first stage of the map-image correlation
process, namely, coarse feature match. In particular, the identified kernel will be based
on the presence of cities as the SAR image features, since they are easy to locate due to
the large number of corner reflectors (dihedral angles) that provide strong returns in
the image. Once the city regions have been extracted from the SAR image, the map-
image correlation kernel will match them against the collection of city regions obtained
from the digital map. Candidate city pair matches are identified on the basis of city size
and distance between pairs of cities in the map and the image. Figure 4 shows the
functional block diagram of the kernel.

SAR F
225 | Find city . eature B
image Extraction
—» Compatible .
Pair Match [ Clustering |—p
—p
Digital Feature ~alignment
IT/I—a—p> Map Process | —p] Extraction [~

Figure 4. Functional block diagram of Map-Image correlation




The Find City block locates city regions in SAR image by identifying groups of bright
pixels in the image using an amplitude screening operator. These results are then
“smeared” using a morphological closing operator. Following the closing operator, the
intermediate results are then opened and closed again to isolate the large regions in the
image which correspond to the possible city locations.

The Map Process block locates city, town and village regions in a digital map and
produces a new binary image that contains only those regions. The Extract block
computes the size and x- and y- centroid of each city region in the input image. The
sizes of the cities are scaled to correspond to the sizes of the cities in the SAR image. A
threshold can also be used to eliminate small city regions.

The Compatible Pair Match block generates the possible line segment combinations by
comparing the sizes of the regions. A pair of size features in the SAR image compares
with every pair of size features in the Map to determine its compatibility. Lastly, the
Clustering block groups the line segment combination in order to determine the best

set of matching segments.

7.3 Parallelization Issues

As shown in Figure 4, the SAR and digital map can be processed in parallel up to the
compatible Pair Match block; one can apply task parallel methodologies to speed up
this portion of benchmark. Furthermore, the Find City block can be executed in a data
parallel manner by partitioning the SAR image. Similarly, the Map process can also be
executed in a data parallel manner.

Feature extraction computations for the SAR image and the digital map are basically
the same, and may be executed using data parallelism. The complexity of the matching
calculation can rapidly become unwieldy as the number of feature pairs grows because
for every pair of features in the image, the set of map features must be searched to find
compatible matches. This computation can be performed independently for each pair of
features, and the results combined across processors to obtain clusters and identify
the most likely matching.

These decomposability indicates that performance speedup of at least two orders of
magnitude should be possible for large images with many features. Further speedup
may be possible depending on the hardware and software tools.

7.4 Kernel Benchmark Data

We have identified and located a database of unclassified SAR imagery from West
Germany. This data is for a 35x35 km. ground footprint. We selected portion of this
data for benchmark evaluation. The sizes of the selected SAR images are 512 x 512,
512 x 1024, 512 x 1536, 1024 x 512, and 1536 x 512 pixels. Co-located standard
DTED I and DFAD I with 100 meter post spacing is also available for the terrain regions
viewed by the SAR sensor. The size of the digital map data is 1280 x 1280 pixels.

8 Hypothesis Testing

8.1 Importance to c31 systems

Hypothesis testing is one of the four basic steps in Wohl's classic Stimulus Hypothesis
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Option Response (SHOR) [23] paradigm of Command and Control. In this paradigm,
stimulus represents the processed sensor information; this stimulus is used to
generate and validate hypotheses concerning the tactical situation. Broadly
interpreted, hypothesis testing algorithms are used throughout C3I, in areas such as
object classification, discrimination, multi-object tracking using multiple hypothesis
methods, and kill or damage assessment. What distinguishes hypothesis testing in
tracking from that in pattern recognition or other classification problems is that for
tracking it is a temporal real-time process, where additional information is collected
over time to help improve the assessments of hypotheses.

Our proposed benchmark kernel for hypothesis testing is based on tracking of
maneuvering targets based on radar measurements. In this problem, a nominal model
of target motion is available for many possible maneuvers; during each time interval, a
target chooses one of the possible maneuvers to execute. The objective of the
hypothesis testing algorithm is to determine the sequence of maneuvers (and thus
track the target accurately) based on the noisy radar measurements. Similar
hypothesis testing problems arise in speech recognition, where a sequence of
utterances must be recognized based on noisy measurements of the individual sounds.

Note that this kernel is different from that used in the original proposal. Our decision
to change the kernel was based on two reasons. The original proposal called for using
an optimal branch-and-bound hypothesis testing algorithm, based on track initiation
in clutter. We felt that using an optimal NP-complete algorithm would make a poor
parallel benchmark, since speedup in such problems is often a function of the order in
which nodes are explored, and this order is hard to maintain in the specification
without handicapping parallel architectures. Such objections would be overcome by
replacing the branch and bound algorithm with a heuristic with more predictable
computations; however, the kernel would then resemble closely the tracking kernel.
Thus, we chose to change the nature of the kernel.

8.2 Kernel Approach

The approach proposed for this kernel is that of using an optimal maximum likelihood
estimation problem for what is known as a hybrid model. The basic maneuvering target
tracking model is described mathematically as:

x(t+1)=A(q())x (1) +w (1) +d(q (1))
y() = Cx(2) +v (1)

where x () is the state representing position and velocity, g (f) is an index denoting

. the maneuver index at stage ¢, w (#) and v (#) are white noise processes representing
modeling uncertainty and measurement uncertainty, respectively, and y (#) are the
radar outputs at time ¢, assumed to be noisy estimates of object position. The input
d(q(t)) is the acceleration which is associated with a given maneuver ¢ () , and the
matrix A (g (t)) denotes how the choice of maneuver affects the state dynamics.

The maneuver process ¢ () is modeled as a finite-state Markov chain, with a specified
set of probability transitions. The nature of the maximum likelihood hypothesis testing
problem is to determine the most likely sequence g (0),q (1), ...,g(T—-1), based on
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the above models and the observation of the measurements y (0),y (1), ...,y (T).
Assume that there are 10 maneuver types which can be used at each stage. Then, the
set of all possible maneuver sequences over T transitions is 107 Thus, the set of

possible hypotheses grows exponentially!

Our proposed benchmark kernel computations are illustrated in Figure 5. At each
stage ¢ the algorithm starts with a set of candidate hypotheses, concerning the
previous sequence of maneuvers ¢ (0), ..., g (- 1), and the associated likelihood that
each hypothesis is correct. At stage ¢, the measurement y (#) is obtained, and a new
set of possible sequences is generated and evaluated, concerning maneuver sequences
q(0), ..., q (). In order to keep the computation complexity under control, a gating
algorithm can be used so that only the 1000 most likely maneuver sequences are kept
for the next interval; this requires comparison of the likelihoods of all the maneuver
sequences, and selecting the 1000 most likely ones. The selection of 1000 alternative
hypothesis should provide enough opportunity for parallel speedup, particularly since
each of these hypothesis can have up to 10 continuations which must be evaluated.

Measurements

Select

Grow C
___—>
( ) Hypotheses Gate Hypotheses

Figure 5. Hypothesis Testing Kernel.

8.3 Kernel Benchmark Data

In order to keep the kernel simple, we propose to use a 2-dimensional (constant
altitude) maneuvering aircraft model, with 10 levels of maneuvers. The data will be
generated using a random problem generator which will select a sequence of
maneuvers. Thus, the input data for this problem will consist of 8 pairs of {x y}
positions, together with the specifications of the matrices A (¢), C, and the vectors
d(g) for up to 10 maneuvers, and with the specification of the transition probabilities
of the Markov chain governing ¢q.

Verification of the kernel will be based on the numerical likelihoods computed for a
subset of maneuver sequences which must be in the top 1000 sequences evaluated, as
well as the likelihood identified for the most likely maneuver sequence.

8.4 Parallelization Issues

This kernel has a nearly linear speedup potential, scalable to large numbers of
processors. The key issues are designing parallel schemes for generating the
hypotheses, a parallel gating algorithm for selecting the 1000 most likely sequences,
and a load-balancing algorithm for redistributing the computational load after the 1000
most likely sequences are selected.
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9 Route Optimization

9.1 Importance to C3I Systems

Route optimization is an important subproblem which arises in the Air Battle Planning
Process and Air Tasking Order generation. Once targets are selected, and appropriate
aircraft and weapons are matched to the targets, route optimization algorithms are
used to find flight paths which increase the likelihood that the aircraft will accomplish
their missions. Route optimization must consider the capabilities and locations of
available enemy surveillance sensors and anti-aircraft weaponry, and exploit potential
terrain masking to design routes with minimal potential for enemy interference. Route
optimization must also consider the effect of supporting resources (such as standoff
jammers) on enemy surveillance capabilities. These problems also arise in other c31
environments such as troop movements of ground forces.

9.2 Kernel Computations

The proposed kernel in route optimization is based on finding the best route from a
specified origin location to a number of destinations. In the Air Force context, best is
often interpreted in terms of minimum risk; this type of route optimization is often
used in automated systems for mission planning, such as the Force-level Automated
Planning System (FLAPS) [21].

Risk Minimum
Assessment > Risk
Routing

Figure 6. Principal Modules in Route Optimization

The inputs to the route optimization algorithms are a discrete space of 3-dimensional
cells, together with an analytical measure of the risk associated in traveling from one
cell to another. This risk is computed as a function of the distance and geometry from
the cells to a set of threat locations, and is a function of visibility and maneuverability.

The principal computations in the route optimization kernel are outlined in Figure 6.
The first block, risk assessment, must evaluate the risk associated with each cell as a
function of the geometric computations between the cell and the threat locations. One
of the components of the risk function is the terrain masking output. In the second
block, a minimum risk route is found using a shortest path algorithm. We propose to
leave the choice of shortest path algorithm as a design parameter in the benchmark
kernel computations; we will provide a specification for an efficient sequential
algorithm candidate, based on the Bellman-Ford variation of the dynamic programming
algorithm.

9.3 Kernel Benchmark Data
The input for this kernel will be in terms of a matrix that contains the vulnerability
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Honeywell, ALPHATECH C31 Parallel Benchmark Suite

index for each cell in the matrix. The matrix represents the physical area over which
the route optimization is to be done. The vulnerability index is a measure of the risk
associated with traversing a cell. One of its components may be the terrain masking
altitude at a cell for a given set of threats.

Test cases for Route Optimization will be selected from Honeywell's work on Threat
Avoidance Analysis on the Quiet Knight program [22]. Although many of these
scenarios involve terrain and enemy capability models which may be classified,
unclassified scenarios will be generated based on hypothetical scenarios.

9.4 Parallelization Issues

The principal parallelization issue in the choice of our kernel is to develop a parallel
shortest path algorithm which can achieve two orders of magnitude speedup when
compared to efficient sequential shortest path algorithms. Fast shortest path
algorithms are usually incremental, and do not parallelize well. However, the geometric
structure of the route-optimization problem allows for efficient parallel dynamic
programming algorithms, such as the Bellman-Ford algorithm. Given the large size of
the problem space, we expect that this algorithm will be parallelizable, and have the
potential for up to two orders of magnitude speedup.

10 Discrete Event Simulation

10.1 Importance to C3I Systems

Among the most critical issues in the analysis of C3I systems is a proper understanding
of the delays associated with information acquisition and dissemination. From an
understanding of the delays in enemy systems, one can identify weaknesses, and
design attack routes which exploit these delays [24]. Discrete event simulation is the
method of choice for conducting these analyses; however, modern sequential
computers are too slow to allow the use of real-time simulations in C”I systems. The
use of parallel processing technology opens up the possibility of developing decision
aids which include real-time discrete event simulations.

10.2 Kernel Computations

The proposed kernel is a discrete event simulation engine that accepts inputs in the
form of a class of timed, Stochastic Petri Net (STPN), similar to ALPHATECH's Modeler
algorithms [25]. STPNs involve tokens flowing through a bipartite, directed network
consisting of places and transitions. Places store tokens, unchanged, while they await
certain conditions to hold at downstream transitions. Transitions fire when - 1) at least
one token exists in each upstream place, and 2) some Boolean enabling function
evaluates as true when applied to a set of tokens, one from each input place. Upon
firing, transitions may remove a token from its input place, and create a new token in
each output place. The time a transition fires may depend on time and random
elements as well. STPNs have been used to model a broad range of C3I systems such as
air defense command and control for the Air Force's Foreign Technology Division (FTD)
[24], air tasking order generation [26] and mobile surveillance systems. The Petri net
structure is flexible enough to represent complex simulations, but is also explicitly
focused on the event structure, so that low-fidelity models can be used to reduce the
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kernel's software complexity.

T

Figure 7. lllustration of Stochastic Timed Petri Net Model.

The general class of Petri nets is too broad, and can result in models which are difficult
to parallelize due to the extensive synchronization requirements. We propose to
generate a model corresponding to a subclass of Petri nets known as Marked Graphs.
Marked graphs have the property that only one transition can follow each place. Thus,
conflicts between transition timings arising from two places accessing the same token
are avoided. Each transition can fire independently of other transitions as soon as all of
its inputs are enabled. Firing a transition involves generation of a random variable
corresponding to the transition time, and eventually generating a token to be placed in
each of the output places.

10.3 Kernel Benchmark Data

The Honeywell team has developed many unclassified discrete-event simulations of C3I
systems in previous programs [26,24]; however, the data for these simulations is
unnecessarily cumbersome, due to the detail required to model an operational system.
We propose to generate a sizable model of a marked graph, using the hierarchical tools
in the Modeler application [25]. This benchmark data would be based on a
simplification of ALPHATECH's Air Tasking Order generation model documented in
[26].

The input will consist of the model structure, in terms of a graph connecting places and
transitions, a random number generator and a set of initial seeds for each transition for
computing the transition times, and an initial marking of the net. Validation of the
implementation can be based on the transition time to reach a final marking, and the
final marking reached. '

10.4 Parallelization Issues

The main challenge in parallelization of the marked graph model is in efficiently
mionitoring and determining which transitions must fire. The marked graph nature of
the structure allows for a simple, asynchronous implementation of the transition rule,
as each transition can be monitoring its input places in parallel. Note that there is a
significant amount of communications and load balancing problems which must be
solved in order to achieve efficient parallelization.

Since discrete-event simulations require the generation of large numbers of random
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variables, we will enforce consistency between parallel and sequential computations by
using identical seeds and random number generators for each transition. In this
manner, the set of random numbers selected will be uniquely specified.

11 Tracking

11.1 Importance to C3I Systems

Multi-target tracking is the primary real-time surveillance function of a C3I system.
Data is reported periodically by one or more sensors; this data must be correlated with
existing track databases, in order to refine the track and identification accuracies
through information fusion, and to establish whether new tracks are present. Multi-
target tracking of cruise missiles using data from different sensors was the focus of
ALPHATECH's Multi-sensor, Multispectral Fusion Program [27] sponsored by Rome
Lab. Multisensor, multi-target tracking of large numbers of midcourse objects was the
principal challenge involved in designing a practical Ballistic Missile Defense system for
large-scale attacks [4]. In the MISTC and A2 programs, sponsored respectively by the
Army's Strategic Defense Command, and in Rome Lab's Battle Management Structures
program, the Honeywell team made significant progress in demonstrating the
applicability of parallel processing to Ballistic Missile Defense tracking.

11.2 Kernel Computations

Sensor
Reports
p—-> Predict—® Gate *H}Bﬁgfﬁ‘éges pdate = Prune —p» Initiatej

Figure 8. lllustration of Tracking Algorithm Computations.
The typical steps in a tracking algorithm are [28] -

* Receive Sensor Reports: Data collected by a sensor corresponding to a single scan
of the scenario is provided to the tracking algorithm.

¢ Predict Tracks: Tracks in the database are extrapolated to the time of the sensor
reports, and converted to sensor measurement coordinates to form predicted
measurements. In addition, the accuracies associated with those tracks are
extrapolated and converted to measurement coordinates.

o Gate: All measurements are compared with all predicted tracks to determine cred-
ible track-measurement associations. The resulting candidate associations are
hypotheses, which must be resolved.

¢ Resolve Hypotheses: The likelihood of candidate hypotheses generated by either
the current gating process or past gating processes is evaluated. Using an approx-
imate maximum likelihood algorithm, a subset of the track hypotheses is selected
for future resolution. These track hypotheses are required to be compatible in
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that prior measurements are associated to only one track, thus removing the
ambiguity created in gating.

.o Update Tracks: Each track hypothesis represents a particular association of the
measurements to tracks; thus, for each hypothesis, the information provided by
the recent measurement is fused with the track information to obtain refined
track information. This operation is often performed by an Extended Kalman Fil-
ter.

e Prune Hypotheses: Hypotheses which are no longer considered active after resolu-
tion are removed, so that new ones can be created in the next sensor scan.

e Initialize Tracks: Sensor measurements which are not associated with existing
tracks are used to generate new track hypotheses for evaluation based on future
measurements.

The above description highlights the cyclic, data-driven nature of tracking algorithms.
Due to the real-time processing requirements, it is essential to use efficient
parallelization in order to handle large-scale modern scenarios with multiple sensors
and thousands of tracks of interest. Tracking also poses an interesting mix of floating
point, easily parallelized computations (e.g. predict tracks, update tracks), data
movement and distribution (receive sensor reports, gating), and combinatorial
processing (resolve hypotheses).

Our proposed benchmark kernel is based on what is known as multiple-hypothesis
tracking algorithms. The key difference between tracking algorithms is the approach
used to resolve hypotheses. In 0-backscan approaches, hypotheses concerning the
association of sensor measurements to tracks are resolved in the same cycle that the
measurements are received, using optimal assignment algorithms such as the JVC
algorithm [3], or suboptimal heuristics such as nearest neighbor or row-column
algorithms [9]. In contrast, n -backscan approaches resolve hypotheses concerning the
association of sensor measurements to tracks after n additional sensor reports have
been incorporated in to the hypotheses. Such algorithms are known as multiple
hypothesis tracking algorithms, since, for each candidate track, the database
maintains a tree of possible hypotheses which correspond to that track, and which will
be resolved when future sensor measurements are available.

In order to simplify the benchmark kernel computations, we will eliminate the track
initialization aspect of the algorithm, and focus primarily on the track continuation
computations. Our kernel corresponds to estimating the 3-dimensional position and
velocity of targets undergoing simple, linear motion with random accelerations, using
data obtained from radars which report errored 3-dimensional positions. In addition,
the radar reports include random Poisson clutter, with uniform density over the radar
coverage. The tracking algorithm will be a 2-backscan multiple hypothesis algorithm.
The suboptimal Resolve Hypotheses algorithm will be a greedy algorithm, which must
first find the most likely single track hypotheses and start a partial hypotheses set.
Subsequently, the most likely hypothesis which is compatible with all of the partial
hypotheses already in the set is added to the set. The algorithm stops when no
compatible hypotheses can be found. The partial hypotheses set is used to prune all
branches in the track trees 2 scans back which do not contain a member of the
hypotheses set.

In order to allow tuning the algorithm to specific parallel architectures, several steps in

17



the tracking algorithm will be specified at a functional level. These steps, such as
gating and hypotheses resolution, can exploit the use of special data structures which
differ among architectures. '

Validation of the implementation will be based on the set of hypotheses which are
maintained by the algorithm after processing of 30 seconds worth of data. Double
precision computations will be required for the real-valued likelihood, prediction and
update computations based on Kalman filtering and model identification algorithms.

11.3 Benchmark Data

As part of our previous work, we have access to large-scale unclassified scenarios. We
propose to use 30 seconds worth of data from the IDA 6260 scenario [4] discussed
previously, with three radar sensors reporting scan data every 10 seconds. Thus, the
kernel will require the tracking algorithm to process data dynamically across several
scans. The resulting data set will provide a realistic kernel, of sufficient size to evaluate
accurately the various parallel performance metrics of interest.

11.4 Parallelization Issues

Our previous experience in the design and implementation of sequential and parallel
multiple hypothesis tracking algorithms [27,7] on SIMD [9] and MIMD [6,7,8]
architectures has shown that speedups of several orders of magnitude are possible;
however, special data structures and algorithm variations must be used to exploit the
features of each architecture. For this reason, our proposed kernel will allow variations
in algorithm data structures across architectures, and thus provide a challenging and
realistic benchmark.

12 Threat Analysis
12.1 Importance to c3 Systems

In C3I systems, Threat Analysis is used to interpret the surveillance and intelligence
information collected, and to provide the human Command and Control with an
assessment of the potential enemy actions, as well as the available options which can
be used to negate each threat. Often, this function is performed by the Command and
Control staff, based on track summary information and intelligence reports.
Nevertheless, there are several aspects of this function which are automated; for
threats under track, there is a need to determine in real-time which interceptor options
can be used to destroy these threats, and the windows of opportunity for these options
(threat accessibility). These operations must be executed as fast as possible, so that
valuable intercept actions are not wasted due to processing delays.

12.2 Kernel Computations

Our proposed computation kernel in Threat Analysis is based on an abstraction of
algorithms developed by the Honeywell team for theater missile defense applications
[29]. The inputs consist of a set of threat tracks with uncertain positions and velocities,
and a set of interceptor bases with different capabilities (abstractions of assets such as
air fields, Patriot Batteries, and THAAD interceptors).
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Figure 9. lllustration of Threat Analysis Computations

The threat analysis algorithms must extrapolate trajectories forward in time using
ballistic trajectory equations. For each extrapolated position, the feasible trajectories of
interceptors from each of the possible launch farms is checked to determine the
earliest launch time and latest launch time (and associated intercept times) for each
launch site against each incoming threat trajectory.

12.3 Kernel Benchmark Data

For this kernel, we propose to use test data generated from an unclassified theater
missile defense scenario in the Middle East. This test data will consist of a set of threat
state vectors, generated shortly after impact, and the location of a suite of different
interceptor batteries, corresponding to capabilities similar to Patriot and THAAD
batteries. Parametrized flyout templates will also be available, in the form of flyout
templates for both Patriot and THAAD.

The primary output of the threat analysis algorithm will be a set of time windows,
indexed by both battery index and threat index, which will represent the times during
which a particular battery can intercept a particular threat. The start and end times for
these windows will be restricted to integer values of time. Thus, verification of
correctness will be based on the values of these windows.

It is possible to generate a set of input scenarios which will scale with the number of
threats and the number of batteries. As part of the kernel specification, we propose to
generate such a nested set of scenarios so that appropriate determination of measures
such as speedup and isoefficiency is possible.

12.4 Parallelization Issues

We expect that this kernel will result in large speedup, since each threat can be
processed independently. A more aggressive approach would be to process in parallel
threat-battery combinations. Furthermore, there are opportunities for effective use of
spatial data structures such as quadtrees or monotonic Lagrangian grids [30,9,31] in
order to achieve additional speedups.

13 Image Understanding

13.1 Importance to c31 Systems

Image Understanding (IU) is important to C3I systems due to the information which it
can autonomously provide regarding the contents of the scenes/environment imaged
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by the sensor(s). IU is a broad category of vision algorithms and applications. Some of
the obviously useful IU algorithms include object recognition and image segmentation,
which are key components in obtaining the location and configuration of enemy
installations and equipment. Such information is invaluable in directing resources and
assets in the course of a conflict.

13.2 Image Understanding Process

The IU technique of Model-Based Vision (MBV) has been successfully employed in the
task of recognizing objects such as tanks, trucks, and buildings. MBV typically
employs three fundamental steps in its operation: feature extraction, indexing, and
verification. The steps are typically very time consuming in all but the most trivial
applications. For example, the extraction of features can be quite intensive depending
upon the type and number of features employed (e.g., segmented regions, corner
points, edge contours, lines fit to edges, etc.). Indexing involves the matching of the
extracted features to multiple models of objects where each object has multiple views
from which it can be viewed (and hence, from which it needs to be matched). The
process of indexing can produce multiple object hypotheses which must be fully
checked/verified against the sensor imagery for consistency (i.e., there must be a rigid
transformation which will make the object model be in agreement with the sensor
image). The verification step involves making a decision on the object class, or
identifying the need for additional features and deferring the object class decision.

13.3 Kernel Approach

The selected kernel is for feature extraction of model-based object recognition, which is
the first critical, fundamental step in image understanding. The kernel algorithm is
called Texture Boundary Locator, which detects and extracts features from the regions
of interests based on the texture of the regions. The kernel algorithm works best on an
optical (visible spectral band) image since it has strong textural information. SAR image
is also a good input candidate for this kernel.

Optical | Mean | Texture gdg(ie Edge Region
imag’e Variance Gradient M\;pence Linking Extraction

Figure 10. Functional block diagram of feature extraction

Figure 10 shows the functional block diagram of the Texture Boundary Locator kernel.
The mean and variance of each pixel of the input image are first computed; they are the
texture measures used to separate the regions in the image. Then the texture gradient
is computed. The next step generates a multi-level edge evidence image: first the
histogram of the texture gradient image, which is normalized, is computed; second,
multiple thresholds are applied to produce discrete images; third, a medial axis
operator is applied to the highest thresholded image producing a skeleton image;
fourth, the skeleton image and the multiple thresholded images are combined together
as the edge evidence image. The next block, edge linking, traces the edge evidence
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image linking any broken edges in the image. Lastly, the region extraction block
extracts the regions and computes some basic features on each region.

13.4 Parallelization Issues

The first four blocks consist of data parallel computations. If the image is partitioned
into grids, different sections of the grid may be processed in parallel. Care must be
taken at the borders of the partitioned grids to prevent any border effects.

The five blocks of the feature extraction kernel must be executed in the sequence
shown. However, parallel execution is possible within each block. For instance in the
first block, the mean and variance can be computed in parallel, although the variance
computation may need the value of the mean value. Variance computation schemes,
such as computing the square of the mean and the mean square, can be applied. Then,
one can compute the mean, and the mean square values in parallel.

The Texture gradient block needs to compute the directional gradients and then either
selects the maximum, minimum or their average. Thus, each directional gradient can
be computed in parallel. Edge evidence map combines multiple thresholded images.
Once the thresholds are determined from the histogram, each threshold can be applied
in parallel to the input generating the multiple thresholded images.

Edge linking also allows parallel implementation. Multiple initial edges can be traced in
parallel. Care should be taken to prevent tracing the same edge on multiple processors.
Although the result would remain the same; the redundant effort represents a waste of
resources. The Region Extraction block behaves like edge linking. Multiple regions can
be initialized and grouped in parallel. Care must be taken to prevent duplicating the
same region, or else duplicated regions must first be eliminated.

13.5 Kernel Benchmark Data

We have identified and located two sets of optical images for the benchmark data. The
data was taken from an aircraft flying over an airport area. Most images are 2048 x
2048; some are 1024 x 1024. This set of images were used in a Machine Learning
program under ARPA/ORD sponsorship. Another optical image that can be used as
benchmark data is an aerial photograph of a site for autonomous land vehicle (ALV)
close to Denver, Colorado. This image is 1394 x 850 pixels. SAR image is another type
of input that this kernel processes. The SAR data that was identified in other kernels,
such as SAR image formation (section 6 on page 6), and map-image correlation (section
7 on page 8), can be used in this kernel

14 Decision Support Systems

14.1 Importance to C3I Systems

Decision support systems assist the human command and control function in
developing and evaluating decision options, and in distributing these decisions to the
appropriate channels. In the modern battlefield, such systems are essential for
commanders to rapidly access the varied sources of information and to select
appropriate actions in a timely manner. Most decision support systems consist of
information presentation and information dissemination systems, and thus have little

21



computational algorithmic content. However, recent systems such as the Advanced
Planning System (APS) for support of the Air Battle Planning Process and Air Tasking
Order generation include capabilities for generating and evaluating options in the areas
of target prioritizing, weapon selection, resource assignment and route planning.

> Predict Determine
Tracks ® threatened >
assets

Figure 11. lllustration of Decision Support System Kernel Computations.

14.2 Kernel Approach

Our proposed kernel in decision support systems is derived from ALPHATECH's Look
Ahead Battle Planner (LABP) [32] algorithms, sponsored by the Air Force's Electronic
Systems Division. The LABP is a decision aid for missile defense operations which
allows a commander to evaluate different rules of engagement and different resource
dispositions for a prescribed attack, by providing predictions of outcomes. One of the
key modules in the LABP is a target prioritizing module, which must project incoming
threat trajectories and their uncertainties onto a set of defended assets, in order to
determine which assets are under attack by each threat, and thus assign a value to the
defense against such a threat based on their potential lethality.

Figure 11 shows the two key modules in the kernel. The inputs consist of a set of
defended asset locations and a set of threat tracks with uncertain positions and
velocities. The kernel must first extrapolate all trajectories and their uncertainties to
impact using ballistic orbit models. Subsequently, the predicted impact points and
their uncertainties are compared with the defended asset database to assign a
likelihood that each asset will be destroyed. The computations require identifying all of
the assets within a certain volume centered at the predicted impact point, and
computing the lethality estimates.

The output of the kernel will be the lethalities assigned for each asset-threat pair. The
kernel computations will be validated by establishing that the computed lethalities are
within roundoff error of the standard ones obtained from a sequential implementation.

14.3 Kernel Benchmark Data

For this kernel, we propose to use the same unclassified Middle East attack scenarios
which was discussed in the Threat Analysis kernel in section 12 on page 18. This will
allow the ease of evaluation of different kernels on multiple architectures.

14.4 Parallelization Issues

The key computation which is hard to parallelize is the comparison of the predicted
impact points with the defended asset database. In particular, the geometric nature of
this problem is well-suited to using spatial data structure representations such as
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quad-trees or multi-grid partitions in order to obtain more efficient parallelization. We
expect that speedup proportional to the number of threats is easy to obtain; for further
effectiveness, partitioning of both threats and defended assets is necessary, as well as
effective load balance in that case. ‘
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